About Our Team

Dr. Cheng linghao
IEEE Member,
The Hong Kong Polytechnic University
.

Dr. Xu pengfei
Beijing Normal University.

Shao Yu
IEEE Member
SEG Associate Member
China National Petroleum Corporation.

Che Jin
Intermec Technologies Pte Ltd.
Nanyang Technologies University.

2008年7月8日星期二

Seismic Noise and Distortion

Noise
Anything other than desired signal. Noise includes disturbances in seismic data caused by any unwanted seismic energy, such as shot generation ground roll, surface waves, multiples, effects of weather and human activity, or random occurrences in the Earth. Noise can be minimized by using source and receiver arrays, generating minimal noise during acquisition and by filtering and stacking data during processing.
  1. Aliasing: The distortion of frequency introduced by inadequately sampling a signal, which results in ambiguity between signal and noise. Aliasing can be avoided by sampling at least twice the highest frequency of the waveform or by filtering frequencies above the Nyquist frequency, the highest frequency that can be defined accurately by that sampling interval.
  2. Bubble effect: Bubble pulses or bubble noise that affect data quality. In marine seismic acquisition, the gas bubble produced by an air gun oscillates and generates subsequent pulses that cause source-generated noise. Careful use of multiple air guns can cause destructive interference of bubble pulses and alleviate the bubble effect. A cage, or a steel enclosure surrounding a seismic source, can be used to dissipate energy and reduce the bubble effect.
  3. Coherent noise: Undesirable seismic energy that shows consistent phase from trace to trace, such as ground roll and multiples.
  4. Cultural noise: Undesirable energy, or noise, generated by human activity, such as automobile traffic that interferes with seismic surveying, or electrical power lines or the steel in pipelines that can adversely affect electromagnetic methods.
  5. Ground roll: A type of coherent noise generated by a surface wave, typically a low-velocity, low-frequency, high-amplitude Rayleigh wave. Ground roll can obscure signal and degrade overall data quality, but can be alleviated through careful selection of source and geophone arrays, filters and stacking parameters.
  6. Surface wave: A wave that propagates at the interface between two media as opposed to through a medium. A surface wave can travel at the interface between the Earth and air, or the Earth and water. Love waves and Rayleigh waves are surface waves.
  7. Multiple reflection: Multiply reflected seismic energy, or any event in seismic data that has incurred more than one reflection in its travel path. Depending on their time delay from the primary events with which they are associated, multiples are characterized as short-path or peg-leg, implying that they interfere with the primary reflection, or long-path, where they appear as separate events. Multiples from the water bottom (the interface of the base of water and the rock or sediment beneath it) and the air-water interface are common in marine seismic data, and are suppressed by seismic processing. (Synonyms: secondary reflection)
-------------------------------------------------------------------------------------------------

Multiply-reflected seismic energy occurs in several ways but is typically removed by seismic processing. Long-path multiples appear as distinct events and generally originate deep in the subsurface. Short-path multiples are added to primary reflections and tend to come from shallow subsurface phenomena.

Diagram of ghosts and multiple reflections

Multiply-reflected seismic energy from the water bottom is common in marine seismic data, but, like many multiples, seismic processing attempts to minimize its presence.

Diagram of multiple reflections

Multiple can be divided into three major types:

  1. Short-path multiple: Multiply-reflected seismic energy with a shorter travel path than long-path multiples. Short-path multiples tend to come from shallow subsurface phenomena or highly cyclical sedimentation and arrive soon after, and sometimes very near, the primary reflections. Short-path multiples are less obvious than most long-path multiples and are less easily removed by seismic processing.
  2. Long-path multiple: A type of multiply-reflected seismic energy that appears as an event. Long-path multiples generate distinct events because their travel path is much longer than primary reflections giving rise to them. They typically can be removed by seismic processing. Long-path multiples originate deep in the subsurface and generate distinct events because their travel path is longer than primary reflections from the same depth.

  3. Peg-leg multiple: A type of short-path multiple, or multiply-reflected seismic energy, having an asymmetric path. Short-path multiples are added to primary reflections, tend to come from shallow subsurface phenomena and highly cyclical deposition, and can be suppressed by seismic processing. In some cases, the period of the peg-leg multiple is so brief that it interferes with primary reflections, and its interference causes a loss of high frequencies in the wavelet.

没有评论: